A bosonic Laplacian is a conformally invariant second order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher order irreducible representations of the special orthogonal group. In this talk, we introduce boundary value problems involving bosonic Laplacians in the upper-half space and the unit ball. We also show the uniqueness for solutions to the Dirichlet problems with continuous data for bosonic Laplacians and provide analogs of some properties of harmonic functions for null solutions of bosonic Laplacians, for instance, Cauchy's estimates, the mean-value property, Liouville's Theorem, etc. This is a joint work with Phuoc-Tai Nguyen and John Ryan.