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Finite Element Methods for Eigenvalue Problems
Daniele Boffi (King Abdullah University of Science and Technology)

Eigenvalue problems are important in many applications areas, such as
electromagnetics, structural mechanics, quantum theory, and control. Important
examples are the Laplace, Maxwell and Schrodinger eigenvalue problems. Finite
element methods provide a well-established numerical method to solve eigenvalue
problems and are supported by an extensive mathematical theory. In this short course,
we will discuss several finite element methods for the computation of eigenvalue
problems. Special attention will be given to the theoretical analysis of finite element
discretizations for eigenvalue problems. In particular, the convergence theories from
Descloux, Nassif and Rapaz, and from Babuska and Osborn will be discussed and used
to analyze the convergence of finite element discretizations for eigenvalue problems.
Reference: D. Boffi, Finite element approximation of eigenvalue problems, Acta
Numerica, 19 (2010), pp. 1-120.

Discontinuous Galerkin Finite Element Methods
J.J.W. van der Vegt (University of Twente)

Discontinuous Galerkin (DG) finite element methods are nowadays one of the main
numerical techniques to solve partial differential equations. The key feature of DG
methods is that discontinuities are allowed in the test and trial spaces at element faces.
This provides great flexibility to build higher order accurate, solution adaptive
numerical discretizations, using local mesh refinement and the local adjustment of the
polynomial order of the test and trial spaces. DG methods also allow for efficient
parallel computing due to minimal element connectivity, and provide element wise
conservative numerical discretizations, which is especially important for hyperbolic
partial differential equations. In these lectures we will discuss the basic principles of
discontinuous Galerkin methods for several important classes of partial differential
equations (hyperbolic, elliptic). Special attention will be given to the mathematical
aspects of DG methods, such as stability, convergence, and accuracy by studying and
analyzing several model problems in detail. If time permits also, the extension to
space-time DG discretizations, which use discontinuous test and trial functions in
space and in time, will be considered for the advection equation and the incompressible
Navier-Stokes equations. As pre-existing knowledge for this course familiarity with
standard conforming finite element methods and their analysis is assumed.
References: D.A. Di Pietro, A. Ern, Mathematical aspects of discontinuous Galerkin
methods, Springer 2012, ISBN 978-3-642-22979-4.



Introduction to Multigrid Methods
Professor J.J.W. van der Vegt (University of Twente)

Multigrid methods provide very efficient iterative methods for the solution of large
systems of (non)linear algebraic equations that result for instance from the
discretization of partial differential equations. In a multigrid method several coarsened
approximations of the algebraic system and well-designed smoothers are used to
accelerate the convergence of the iterative method. This can result in very efficient
iterative methods, but if one wants to develop new multigrid algorithms or understand
the performance of existing algorithms, then multilevel analysis is indispensible. In this
class an outline of basic multigrid and iterative methods will be given and
mathematical techniques to understand and predict their performance will be discussed.
No prior knowledge of multigrid or iterative methods will be required. After this class
you should be able to use basic iterative and multigrid methods, analyze and
(approximately) predict multigrid performance using multilevel analysis and apply
these techniques to improve and test multigrid algorithms. The main applications will
be from numerical discretizations of partial differential equations.

Reference: U. Trottenberg, C.W. Oosterlee, A. Schiiller, Multigrid, Academic Press,
ISBN 0-12-701070-X, 2001.
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8 A 13 H &R (FEMZEREARKE)

& H : Structure-preserving parametric finite element methods for geometric
PDEs with applications

f#%L: The motion of interfaces driven by a law for the normal velocity which
involves curvature quantities plays an important role in materials sciences,
interface dynamics in multiphase flow and applied mathematics, etc. In this talk, I
will present a structure-preserving parametric finite element method (PFEM) for
the geometric flow and then generalize the introduced method to the multiphase
flow. Finally, applications to dewetting of solid thin films with sharp-interface
models and PFEM approximations will be discussed.

8 A 14 H k¥R (FRMILKEE)

& H: Why spectral methods are preferred in PDE eigenvalue computations
--- in some cases?

i %L: When approximating PDE eigenvalue problems by numerical methods
such as finite difference and finite element methods, it is well-known that only a
small portion of the numerical eigenvalues are reliable. In contrast, spectral
methods can perform extremely well in some situations, especially for one-
dimensional problems and certain special higher-dimensional cases. Furthermore,
we demonstrate that spectral methods can outperform traditional methods and the
state-of-the-art methods for two-dimensional problems, even those with
singularities.
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@ H : The ultraspherical spectral method

L. EEREE 778 (ultraspherical spectral method) J&—FhHT A= i K il 252
W R R i k. ERARER. FKEG. REtE. SHE
PLAHE o HEERIE TR AEARRI LA MG % AR R4
X — IR L R e

8 A 17 H A (ERIFIEARZE)

&5 H : High order bound preserving and oscillation free methods for
compressible multi-species flow with chemical reactions

f§%%: In this talk, we consider bound preserving problems for multispecies and
multireaction chemical reactive flows. In this problem, the density and pressure
are nonnegative, and the mass fraction should be between 0 and 1. The mass
fraction does not satisfy a maximum principle and hence it is not easy to preserve
the upper bound 1. Also, most of the bound-preserving techniques available are
based on Euler forward time integration. Therefore, for problems with stiff source,
the time step will be significantly limited. Some previous ODE solvers for stiff
problems cannot preserve the total mass and the positivity of the numerical
approximations at the same time. In this work, we will construct third order
conservative bound-preserving methods to overcome all these difficulties.
Moreover, we will discuss how to control numerical oscillations.

8 A 18 H BEMA (HEITKH)

%5 H : Nonlinear least-squares finite element methods for fully nonlinear
partial differential equations

f§%E: In this talk, I will introduce nonlinear least-squares finite element methods
for fully nonlinear PDEs based on the C° interior penalty method and mainly
focus on the methods for the Monge-Ampere equation and the Pucci equation on
convex domains in 2D.

8H 19H BFEEZE (EITXK¥)

@ H : Efficient and physics-preserving numerical methods for two-phase
flow and multicomponent flow in porous media

##H%L: Modeling and simulation of two-phase flow and gas flow in porous media
are of great interest in the fields of hydrology and petroleum reservoir engineering.
In this talk, we will first introduce a new physics-preserving IMPES scheme for
simulating classical incompressible and immiscible two-phase flow in
heterogeneous porous media with capillary pressure effects. The new algorithm is
locally mass conservative for both phases. Furthermore, the scheme is unbiased
with respect to the two phases, and the saturations of both phases are bounds-
preserving provided the time step size is smaller than a certain threshold value.
We will then apply this new approach to develop a fully mass-conservative
IMPEC scheme for modeling classical multicomponent flow in porous media.
Additionally, we will discuss the recently developed thermodynamically
consistent modeling and simulation for two-phase flow and multicomponent flow
in porous media.
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5§ %%: The phenomenon of superconvergence is well understood for the h-version
finite element method, and researchers in this established field have accumulated a
vast body of literature over the past 60 years. However, there is a lack of relevant
systematics studies for other numerical methods such as the p-version finite
element method, spectral methods, discontinuous Galerkin methods, and finite
volume methods. We believe that the scientific community would also benefit
from studying of superconvergence phenomenon in these methods. In the last
decade, efforts have been made to expand the scope of superconvergence. In this
talk, we present some developments in the study of superconvergence for the local
discontinuous Galerkin methods.

8 H 22 H #&8 (FERERAKRS

&5 H : Discontinuous Galerkin method for the nonlinear time-dependent
equations

%L In this talk, we discuss local discontinuous Galerkin method for solving the
nonlinear time-dependent equations which contain nonlinear high order
derivatives. The discretization results in an extremely local, element based
discretization, which is beneficial for parallel computing and maintaining high
order accuracy on unstructured meshes. In particular, the methods are well suited
for hp-adaptation, which consists of local mesh refinement and/or the adjustment
of the polynomial order in individual elements. The stability and the error
estimates of the numerical methods will be discussed. Numerical simulation
results for different types of solutions illustrate the accuracy and capability of the
methods.

8 A 23 H #&& (FEMERAKRE)

& H : Higher order accurate bounds preserving time-implicit discretizations
for the nonlinear time-dependent equations

f§%%: In this talk, we discuss a novel semi-implicit spectral deferred correction
(SDC) time marching method. The method can be used in a large class of
problems, especially for highly nonlinear ordinary differential equations (ODEs)
without easily separating of stiff and non-stiff components, which is more general
and efficient comparing with traditional semi-implicit SDC methods. The
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proposed semi-implicit SDC method is based on low order time integration
methods and corrected iteratively. The order of accuracy is increased for each
additional iteration. This SDC method is intended to be combined with the
method of lines, which provides a flexible framework to develop high order semi-
implicit time marching methods for nonlinear partial differential equations
(PDEs). Coupled with the LDG spatial discretization, the fully discrete schemes
are all high order accurate in both space and time, and stable numerically with the
time step proportional to the spatial mesh size. Using Lagrange multipliers the
conditions imposed by the positivity preserving limiters are directly coupled to a
DG discretization combined with implicit time integration method. The positivity
preserving DG discretization is then reformulated as a Karush-Kuhn-Tucker
(KKT) problem. We therefore develop an efficient active set semi-smooth
Newton method that is suitable for the KKT formulation of time-implicit positivity
preserving DG discretizations. Convergence of this semi-smooth Newton method
is proven using a specially designed quasi-directional derivative of the time-
implicit positivity preserving DG discretization. Numerical experiments are
carried out to illustrate the accuracy and capability of the proposed method.
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#4158 H: Bound-Preserving Schemes and Theory

i %L: Solutions to many partial differential equations (PDEs) are subject to
certain bounds or constraints. For instance, in fluid dynamics, density and pressure
must remain positive, while in relativistic cases, fluid velocity must not exceed the
speed of light. Developing bound-preserving numerical methods that uphold these
intrinsic constraints is crucial. Recently, significant attention has been given to
design provably bound-preserving schemes, though challenges remain,
particularly for systems with nonlinear constraints.In this talk, I will present our
recent efforts in developing foundemental bound-preserving theories:

1. Geometric Quasilinearization (GQL): Drawing on key insights from geometry,
we propose a novel and general framework called geometric quasilinearization.
GQL offers an effective approach for addressing bound-preserving problems with
nonlinear constraints by transforming these constraints into linear ones through the
introduction of auxiliary variables. We establish the fundamental principles and
general theory of GQL using the geometric properties of convex regions and
present three effective methods for constructing GQL.

2. Optimal Cell Average Decomposition (OCAD): Utilizing convex geometry and
symmetric group theory, we develop the optimal cell average decomposition
theory, which provides a foundation for constructing more efficient bound-
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preserving schemes. We demonstrate that the classic Zhang-Shu CAD is optimal
in one dimension but generally not in multiple dimensions, thereby addressing
their conjecture proposed in 2010.

We apply the GQL and OCAD approaches to various PDEs, showcasing their
effectiveness and advantages through diverse and challenging examples and
applications, including magnetohydrodynamics (MHD), relativistic
hydrodynamics, and the ten-moment Gaussian closure system.
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&M H: A preconditioned Riemannian conjugate gradient method to compute the
ground state of arbitrary-angle rotating dipolar Bose-Einstein Condensates

%L In this talk, we will present an efficient numerical method for computing the
ground state of the arbitrary-angle rotating dipolar Bose-Einstein Condensates (BEC).
The method consists two main merits: (i) efficient and accurate numerical methods will
be proposed to evaluate the nonlocal dipole-dipole interaction. (ii) a preconditioned
Riemannian conjugate gradient (P RCG) method coupled with the Fourier pseudo-
spectral discretization to numerically compute the GS. A robust and efficient
preconditioner together with an adaptive stepsize control strategy are provided to
accelerate the convergence process of pRCG algorithm. Utilizing the pRCG algorithm,
GS patterns of arbitrary- angle rotating BEC under various settings are carried out.
Particularly, for the first time, we observe bent vortex lines, including U-shape and S-
shape vortex lines, in the elongated BEC with arbitrary-angle rotation.

EMA GEHRFE

&M H: The finite volume element method with global conservation law

##%L: Conservation laws are fundamental physical properties that are expected to be
preserved in numerical discretizations. We propose a two-layered dual strategy for the
finite volume element method (FVEM), which possesses the conservation laws in both
flux form and equation form. In particular, for problems with Dirichlet boundary
conditions, the proposed schemes preserves conservation laws on all triangles, whereas
conservation properties may be lost on boundary dual elements by existing vertex-
centered finite volume element schemes. Theoretically, we carry out the optimal L2
analysis with reducing the regularity requirement from $u\in H*{k+2}$ to $u\in
H"{k+1}$. While, as a comparison, all existing L"2 results for high-order

$(k>=2)$ finite volume element schemes require u\in H"{k+2} in the analysis.

trE (FEBERRKFE)

&M H: Structure-preserving arbitrary Lagrangian-Eulerian discontinuous Galerkin
methods for hyperbolic conservation law with source term

##%: We develop the structure-preserving Lagrangian-Eulerian discontinuous
Galerkin (ALE-DG) methods for a class of hyperbolic conservation laws with source
term, which can preserve a general hydrostatic equilibrium state and positivity-
preserving property under a suitable time step at the same time. Such equations mainly
include the shallow water equations with non-flat bottom topography and the Euler
equations with gravitation. By introducing well-balanced numerical fluxes and
corresponding source term approximations, we established well-balanced schemes. We
also discuss about the weak positivity property of the proposed schemes, and the
positivity-preserving limiter can be applied to enforce the positivity-preserving
property effectively. Numerical examples have been provided not only to demonstrate
the good properties but also to show the advantages on moving mesh.



